
THE LABELLED PEER CODE

FOR KNOT AND LINK DIAGRAMS

12th December, 2024

A labelled peer code is a descriptive syntax for a diagram of a knot or link on a two di-

mensional sphere. The syntax is able to describe classical, virtual, welded or flat knot and link

diagrams.

1 Peer Codes

LetD be an oriented diagram of a knot or link with k components and let I(D) be the immersion

of D in the plane. Thus I(D) is a 4-regular plane graph with n vertices and 2n edges, sometimes

referred to as a shadow, and it inherits an orientation from D. Each vertex in I(D) has two

incoming edges and two outgoing edges, with respect to the orientation. The two incoming edges

are called peers, or peer edges. We shall refer to the image of each component of D in I(D) as a

component of I(D).

Lemma The image of each component of D in I(D) contains an even number of edges.

Proof Suppose C is a component I(D). Seifert smooth any self intersections of C to form

C′, which is a union of disjoint, oriented simple closed curves. There must be an even number

of intersections of each component of C′ with I(D) − C since, by the Jordan Curve Theorem, as

we trace every other component of I(D) following its orientation, for each time that we enter the

interior of a component of C′ we must also leave that interior. Thus C′ contains an even number of

edges, and since re-instating the self instersections adds a pair of edges, so does C. �

Lemma The regions of I(D)’s complement in the plane may be two-coloured in a chessboard

fashion.

Proof This is a special case of a more general result concerning planar graphs G whose vertices

all have even valency. If G is such a graph, regarded as lying in S2, and G′ is its dual graph, then

the regions of G′ all have an even number of edges. By choosing a colour for the vertex of one region

arbitrarily and extending the colouring of the vertices of G′ by alternating the colouring around the

regions of G′ in turn it is possible to two-colour the vertices of G′ in a consistent manner. This

two-colouring of the vertices of G′ corresponds to a two-colouring of the regions of G. �

Choose an initial component of D and a basepoint b for that component that does not map to a

vertex in I(D). Number the edges in I(D) consecutively from zero starting at the edge containing

image of b and following the path determined by the orientation of D. This results in crossings of

I(D) whose incoming edges have both been numbered having one peer assigned an even number

and the other peer an odd number.

Now proceed successively through the remaining components of D in a similar manner, each

time choosing the next component so that its image in I(D) involves a crossing that has already had

a number assigned to one of its incoming edges. Extend the numbering to the corresponding edges

in I(D) choosing a basepoint on the next component so that crossings whose incoming edges have

both been numbered have one peer assigned an even number and the other peer an odd number. It

is always possible to choose such a basepoint: the following argument is due to Roger Fenn.

1

Lemma Let S be a shadow in general position. Then the edges of S can be coloured by two

colours, orange and emerald, so that at each crossing the incoming edges have different colours, as

do the outgoing edges. Moreover the colours change as the edges cross the crossing.

Proof Colour the regions black and white chessboard fashion. Now orient the crossings so that

the incoming edges are on the left and the outgoing edges are on the right. If the region above is

black colour the top edges orange and the bottom edges emerald. If the region above is white, do

the opposite. It is easy to check that this defines a coherent colour for each edge which satisfies the

above. �

Corollary The edges of a shadow in general position with n crossings can be labelled con-

secutively respecting the orientation with the integers from 1 to 2n such that at any crossing the

incoming edges are odd and even; likewise the outgoing edges.

Proof Colour the edges orange and emerald as in the above lemma. Pick an orange edge

and label it 1. Continue past the next crossing and label the next edge, coloured with emerald, 2.

Continue in this fashion until all the integers from 1 to 2k say are used for this component. For the

second component chose an orange edge and label it 2k+1, etc. �

The numbering of edges in I(D) induces a unique numbering of the vertices 0, . . . , n − 1 by

assigning the vertex at which edge 2i terminates the number i.

Definition 1.1 We shall refer to the edge numbered 2i terminating at vertex i as the naming

edge for that vertex.

Note also that the numbering of the edges of I(D) determines a permutation ρ on n elements as

follows. At each vertex i the incoming edges are numbered 2i and 2j− 1 for some j ∈ {0, . . . , n− 1}

where we count edges modulo 2n. Define ρ(i) = j. This permutation allows us to enumerate peer

codes, as described below.

From the numbering of the edges of I(D) we may write a list of the odd numbered peers in

the order determined by the vertex numbering. We separate this list into the peers of those naming

edges that are associated with the same component of D

0

1

23

4

5 6

7

8

9

10

11
12

13

Figure 1.

2

For example, for the immersion and edge numbering shown in Figure 1, the list of odd peers is

11 9, 3 1 13 5 7

1.1 Type I and Type II crossings

There are two possibilites for the relative numbering of incoming edges at a vertex of I(D), as

shown in Figure 2.

a)

2j − 1

2i

2i+ 1

2j
b)

2i

2j − 1

2j

2i+ 1

Figure 2.

Definition 1.2 A crossing of the type shown in Figure 2 a) is called a Type I crossing and a

crossing of the type shown in Figure 2 b) is called a Type II crossing.

The list of odd peers may be supplemented to record the type of each crossing by writing each

odd peer associated with a Type I crossing as a negative number.

For the immersion in Figure 1 we get

−11 9, −3 1 − 13 5 − 7

we refer to this code as a peer code.

2 Labelled Peer Codes

We may describe a knot or link diagram D fully by giving its peer code together with a set of

labels that describe each crossing. The supported label types are as follows

i) + for classical crossings where the naming edge in I(D) forms part of the over-arc

ii) − for classical crossings where the naming edge in I(D) forms part of the under-arc

iii) ∗ for virtual crossings

iv) # for flat crossings

v) @ for singular crossings.

Definition 2.1 A labelled peer code for a diagram D is a peer code for D together with a set

of labels, one for each crossing. It is written as the peer code followed by a ’/’ character, followed in

turn by the labels. The labels appear in the order induced on the vertices of I(D) by the numbering

of its edges.

3

0

1

23

4

5 6

7

8

9

10

11
12

13

Figure 3.

Thus, the labelled peer code for the link and numbering shown in Figure 3 is

−11 9, −3 1 − 13 5 − 7 /+ − − + − + −

For the purposes of distinguishing labelled peer codes from other codes when using a computer

the peer code will be enclosed in square brackets, as follows:

[−11 9, −3 1 − 13 5 − 7] /+ − − + − + −

2.1 Peer codes for knotoids

A knotoid K is specified using a labelled peer code by adding a shortcut that passes everywhere

under K, forming K in Turaev’s notation. Then, K is a knot for which we can write the labelled

peer code determined by numbering the semi-arc containing the leg of K as zero and proceeding in

the direction from the leg to the head.

For a pure knotoid, we identify the first crossing introduced by the shortcut by writing a ’ˆ’

symbol after the peer of the crossing’s naming edge in the peer code. There is a unique semi-arc

that enters this crossing as an under-arc with the orientation of K described above. Thus the ’ˆ’

character uniquely identifies the semi-arc containing the head of K.

For example, given the following knotoid and shortcut (shown dashed)

0

1

2

3

4

5

6

7

8

9

Figure 4.

4

we obtain the labelled peer code [−3 − 7 − 9ˆ− 1 − 5]/ + + + + +

3 Extended peer code

The peer code syntax described above is only capable of describing knotoids and multi-knotoids

with a single open (segment) component. To accommodate knotoids with multiple open components,

or multi-linkoids as they are sometimes known, it is necessary to introduce additional syntax to a

peer code. Peer codes containing this additional syntax are referred to as extended peer codes.

A diagram with multiple open components may contain both knot-like components, where the

leg and the head lie adjacent to each other, or may contain pure-knotoid components, where the leg

and the head lie in different regions of the diagram’s complement. As above, in the case of knotoids,

we add a shortcut to each open component to obtain a knot diagram to which we can apply peer

labels but for multi-linkoids we regard the shortcut as the virtual closure of the component, rather

than a shortcut that passes everywhere under the diagram between the head and the leg. The reason

for this difference is because in some diagrams of multi-linkoids, for example Figure 5, the shortcuts

for two different components may intersect, even though we shall still require that a shortcut has no

self-intersections.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

161718

19

20

21

22

23

24

25

Figure 5.

The edge labelling of a multi-linkoid is required to start at the at the leg of an open component

but since the open components may not intersect, the remaining components may be labelled in any

order that allows the odd and even terminating label assignment to be extended across the diagram.

In so doing, we may have the situation where the leg of a subsequent pure-knotoid component

appears on an odd-numbered edge, again see Figure 5. Similarly, a knot-like open component may

have the leg and head in either an odd numbered or even numbered edge.

In order to accommodate these various cases, we require that the edge labelling of a component

is such that, if the leg of an open component lies on an even edge, then it is the first edge of that

component and if it lies on an odd edge then it is the last edge of the component. It is always

possible to cycle the labels on a component to meet these requirements whilst retaining odd and

even terminating peers at each crossing.

The nature of each open component is described in an extended peer code using the following

5

syntax, which is defined so that it as close to the normal peer code syntax as possible by using the

’ˆ’ symbol to indicate the location of the head of an open component whose leg appears on an even

numbered edge.

a1) A ’ˆ’ symbol placed before an odd peer indicates that the odd peer terminates at the first

crossing of its component’s virtual closure, and the first edge of that component (an even edge)

is the leg.

a2) A ’ˆ’ symbol placed after an odd peer indicates that the corresponding even peer terminates at

the first crossing of its component’s virtual closure, and the first edge of that component (an

even edge) is the leg.

b1) A ’$’ symbol placed before an odd peer indicates that the odd peer terminates at the first

crossing of its component’s virtual closure, and the last edge of that component (an odd edge)

is the leg.

b2) A ’$’ symbol placed after an odd peer indicates that the corresponding even peer terminates at

the first crossing of its component’s virtual closure, and the last edge of that component (an

odd edge) is the leg.

c1) A ’%’ symbol placed at the start of a component indicates that the component is knot-like open

and that the leg and head occur within the first (even) edge of the component.

c2) A ’%’ symbol placed at the end of a component indicates that the component is knot-like open

and that the leg and head occur within the last (odd) edge of the component.

Note that a ’ˆ’ or a ’$’ symbol placed before an odd peer conveys information about the odd

terminating edge’s component, whereas if the symbol were placed after the odd peer, it conveys

information about the even terminating edge’s component. Note also that a ’ˆ’ or a ’$’ symbol

placed before an odd peer may be preceeded by a ’-’ symbol, indicating a type I crossing, so crossing

data should appear as in ’-$7’ or ’-ˆ9’. Moreover, if a crossing happens to lie at the start of the

virtual closure for both of its terminating edges, then a ’ˆ’ or a ’$’ symbol may appear both before

and after the odd peer, as in ’-$7ˆ’, ’ˆ7ˆ’ or ’-ˆ9$’ etc.. A ’%’ symbol is placed at the very start of

a component in case c1, in front of any ’-’ symbol if the first crossing happens to be type I.

For example, the following diagram is described by the extended peer code:

[9 − 15ˆ, −11 13$, 3 17 − 19 21 − 1 5 − 7%]/ + ∗ − ∗ ∗ − − + ∗ − −

6

01

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17
18

19

20

21

Figure 6.

The diagram in Figure 5 is described by the extended peer code

[−17 21 − 23, 1 19$ − 5, −7 − ˆ3 11 25 − 13 15 9]/ + + ∗ + ∗ ∗ + ∗ + − + − ∗

An example of a crossing having both its terminating edges lying at the head of their respective

components is:

[15 − 19 − 13, 1 − ˆ3$ 17, 9 21 − 23 25 7 − 5 − 11]/ + + ∗ + ∗ ∗ ∗ − + − + ∗ +

01

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21 22

23

24

25

Figure 7.

7

4 Realizable Peer Codes

Although patently the peer code for a link diagram is not unique, an interesting question is

to ask when a given peer code corresponds to a realizable diagram. This may be answered by

noticing that a connected immersion I(D) determines a cellular decomposition of S2 and so by

Euler’s theorem the number of components of S2 − I(D) is n+ 2.

Definition 4.1 For each even numbered edge e in a connected immersion I(D) there is a

sequence of edges e0, . . . , ek with e = e0 = ek called the left turning cycle obtained by turning

left at each crossing we encounter as we trace around I(D) starting by moving along e following

the orientation of I(D). Similarly we define the right turning cycle for e as the corresponding

sequence obtained by always turning right. We define left and right turning cycles for odd numbered

edges in the same way but require that we start by moving along the edge against the orientation

of I(D).

Clearly every edge in a left (right) turning cycle will determine the same left (right) turning

cycle.

Given a peer code, we are able to determine unambiguously the edge we encounter when turning

left or right at a crossing, whether we have arrived following the orientation or not (see Figure 2). We

are therefore able to determine whether the peer code is connected or not and, if so, may determine

L the set of distinct left turning cycles, R the set of distinct right turning cycles, and c = |L|+ |R|.

If each edge appears exactly once in L and exactly once in R and if c = n+2 then the peer code

is realizable. We may construct a cellular 2-sphere from discs whose boundaries correspond to the

turning cycles of L and R, and whose 1-skeleton is an immersion that yields our given peer code.

Since we may enumerate permuations of n elements, and may designate crossings as Type I or

Type II in only a finite number of ways, and there are only a finite number of ways that we may

allocate commas to denote link components, we may determine how many realizable peer codes are

possible with n crossings and m components. This has been done by computer search to produce

the following table.

number of realizable peer codes
crossings, n m = 1 m = 2 m = 3

3 2 0 0
4 4 8 48
5 12 112 144
6 84 468 1120
7 394 2736 10800
8 1972 17416 68304
9 10604 101696 487296
10 56420 620656
11 309124

Clearly, these realizable codes contain many symmetries and redendancies. Reversing the cross-

ing types results in a reflection of the immersion. Starting the numbering of a component at a

different edge, possibly reversing the orientation at the same time, or numbering the components in

a different order, produces a different code for the same diagram. The above table was calculated

8

assuming no Reidemeister type I moves, another redundancy that may be detected by a computer

is when a diagram is a connected sum. Removing these symmetries and redundancies results in the

following table.

number of realizable peer codes
crossings, n m = 1 m = 2 m = 3 m = 4

3 1 0 0 0
4 1 1 0 0
5 2 1 0 0
6 3 4 2 0
7 10 7 1 0
8 27 27 7 1
9 101 77 19 1
10 364 341
11 1610

9

