$BR^4_{1}(Q^4_{1},Q^4_{1})\quad U=\iota\quad D=\iota\quad \hbox{order 2} \quad S, c_1 = 8, c_2 = 0$\hfil\break $BR^4_{2}(Q^4_{4},-)\quad U=(\iota , \iota , (3 4) , (3 4))\quad D=(\iota , (3 4) , \iota , \iota)\quad \hbox{order 4} \quad c_1 = 4, c_2 = 0$\hfil\break $BR^4_{3}(Q^4_{5},-)\quad U=(\iota , \iota , (3 4) , (3 4))\quad D=((3 4) , (3 4) , \iota , \iota)\quad \hbox{order 4} \quad c_1 = 4, c_2 = 0$\hfil\break $BR^4_{4}(-,Q^4_{5})\quad U=(\iota , \iota , (1 2) , (1 2))\quad D=(\iota , \iota , (3 4) , (3 4))\quad \hbox{order 4} \quad c_1 = 4, c_2 = 0$\hfil\break $BR^4_{5}(Q^4_{5},Q^4_{5})\quad U=(\iota , \iota , (1 2) , (1 2))\quad D=((3 4) , (3 4) , \iota , \iota)\quad \hbox{order 4} \quad c_1 = 4, c_2 = 0$\hfil\break $BR^4_{6}(-,Q^4_{5})\quad U=(\iota , \iota , (1 2) , (1 2))\quad D=((3 4) , (3 4) , (3 4) , (3 4))\quad \hbox{order 4} \quad c_1 = 6, c_2 = 2$\hfil\break $BR^4_{7}(Q^4_{5},-)\quad U=(\iota , \iota , (1 2)(3 4) , (1 2)(3 4))\quad D=((3 4) , (3 4) , \iota , \iota)\quad \hbox{order 4} \quad c_1 = 2, c_2 = 2$\hfil\break $BR^4_{8}(Q^4_{4},Q^4_{4})\quad U=(\iota , \iota , \iota , (2 3))\quad D=(\iota , \iota , \iota , (2 3))\quad \hbox{order 2} \quad S, c_1 = 4, c_2 = 0$\hfil\break $BR^4_{9}(-,Q^4_{4})\quad U=(\iota , (3 4) , \iota , \iota)\quad D=(\iota , (3 4) , (3 4) , (3 4))\quad \hbox{order 4} \quad c_1 = 4, c_2 = 0$\hfil\break $BR^4_{10}(Q^4_{4},Q^4_{4})\quad U=(\iota , (3 4) , \iota , \iota)\quad D=((3 4) , \iota , \iota , \iota)\quad \hbox{order 4} \quad c_1 = 4, c_2 = 0$\hfil\break $BR^4_{11}(-,Q^4_{4})\quad U=(\iota , (3 4) , \iota , \iota)\quad D=((3 4) , \iota , (3 4) , (3 4))\quad \hbox{order 4} \quad c_1 = 4, c_2 = 0$\hfil\break $BR^4_{12}(Q^4_{5},Q^4_{4})\quad U=(\iota , (3 4) , \iota , \iota)\quad D=((3 4) , (3 4) , \iota , \iota)\quad \hbox{order 4} \quad c_1 = 4, c_2 = 0$\hfil\break $BR^4_{13}(-,Q^4_{4})\quad U=(\iota , (3 4) , \iota , \iota)\quad D=((3 4) , (3 4) , (3 4) , (3 4))\quad \hbox{order 4} \quad c_1 = 6, c_2 = 2$\hfil\break $BR^4_{14}(Q^4_{5},-)\quad U=(\iota , (3 4) , (3 4) , (3 4))\quad D=((3 4) , (3 4) , \iota , \iota)\quad \hbox{order 4} \quad c_1 = 4, c_2 = 0$\hfil\break $BR^4_{15}(Q^4_{2},-)\quad U=(\iota , (2 3 4) , (2 3 4) , (2 3 4))\quad D=((2 3 4) , \iota , \iota , \iota)\quad \hbox{order 6} \quad c_1 = 2, c_2 = 0$\hfil\break $BR^4_{16}(Q^4_{2},-)\quad U=(\iota , (2 4 3) , (2 4 3) , (2 4 3))\quad D=((2 3 4) , \iota , \iota , \iota)\quad \hbox{order 6} \quad c_1 = 2, c_2 = 0$\hfil\break $BR^4_{17}(Q^4_{2},Q^4_{2})\quad U=(\iota , \iota , \iota , (1 2 3))\quad D=(\iota , \iota , \iota , (1 2 3))\quad \hbox{order 6} \quad S, c_1 = 2, c_2 = 0$\hfil\break $BR^4_{18}(Q^4_{2},Q^4_{2})\quad U=(\iota , \iota , \iota , (1 3 2))\quad D=(\iota , \iota , \iota , (1 2 3))\quad \hbox{order 2} \quad c_1 = 2, c_2 = 0$\hfil\break $BR^4_{19}(Q^4_{6},-)\quad U=(\iota , \iota , (3 4) , (3 4))\quad D=((3 4) , (3 4) , (1 2) , (1 2))\quad \hbox{order 4} \quad c_1 = 2, c_2 = 2$\hfil\break $BR^4_{20}(Q^4_{5},Q^4_{5})\quad U=(\iota , \iota , (1 2) , (1 2))\quad D=(\iota , \iota , (1 2) , (1 2))\quad \hbox{order 2} \quad S, c_1 = 4, c_2 = 0$\hfil\break $BR^4_{21}(-,Q^4_{5})\quad U=(\iota , \iota , (1 2) , (1 2))\quad D=(\iota , \iota , (1 2)(3 4) , (1 2)(3 4))\quad \hbox{order 4} \quad c_1 = 2, c_2 = 2$\hfil\break $BR^4_{22}(Q^4_{6},Q^4_{5})\quad U=(\iota , \iota , (1 2) , (1 2))\quad D=((3 4) , (3 4) , (1 2) , (1 2))\quad \hbox{order 4} \quad c_1 = 2, c_2 = 2$\hfil\break $BR^4_{23}(-,Q^4_{5})\quad U=(\iota , \iota , (1 2) , (1 2))\quad D=((3 4) , (3 4) , (1 2)(3 4) , (1 2)(3 4))\quad \hbox{order 4} \quad c_1 = 4, c_2 = 0$\hfil\break $BR^4_{24}(Q^4_{6},-)\quad U=(\iota , \iota , (1 2)(3 4) , (1 2)(3 4))\quad D=((3 4) , (3 4) , (1 2) , (1 2))\quad \hbox{order 4} \quad c_1 = 0, c_2 = 0$\hfil\break $BR^4_{25}(-,Q^4_{4})\quad U=(\iota , (3 4) , \iota , \iota)\quad D=((3 4) , (3 4) , (1 4) , (1 3))\quad \hbox{order 6} \quad c_1 = 3, c_2 = 1$\hfil\break $BR^4_{26}(-,Q^4_{5})\quad U=((3 4) , (3 4) , \iota , \iota)\quad D=((3 4) , (3 4) , (3 4) , (3 4))\quad \hbox{order 4} \quad c_1 = 6, c_2 = 2$\hfil\break $BR^4_{27}(-,Q^4_{6})\quad U=((3 4) , (3 4) , (1 2) , (1 2))\quad D=((3 4) , (3 4) , (3 4) , (3 4))\quad \hbox{order 4} \quad c_1 = 4, c_2 = 4$\hfil\break $BR^4_{28}(Q^4_{5},-)\quad U=((3 4) , (3 4) , (1 2)(3 4) , (1 2)(3 4))\quad D=((3 4) , (3 4) , \iota , \iota)\quad \hbox{order 4} \quad c_1 = 4, c_2 = 0$\hfil\break $BR^4_{29}(Q^4_{6},Q^4_{6})\quad U=((3 4) , (3 4) , (1 2) , (1 2))\quad D=((3 4) , (3 4) , (1 2) , (1 2))\quad \hbox{order 2} \quad S, c_1 = 0, c_2 = 0$\hfil\break $BR^4_{30}(-,Q^4_{6})\quad U=((3 4) , (3 4) , (1 2) , (1 2))\quad D=((3 4) , (3 4) , (1 2)(3 4) , (1 2)(3 4))\quad \hbox{order 4} \quad c_1 = 2, c_2 = 2$\hfil\break $BR^4_{31}(-,Q^4_{2})\quad U=(\iota , \iota , \iota , (1 3 2))\quad D=((2 3) , (1 3) , (1 2) , (1 2 3))\quad \hbox{order 6} \quad c_1 = 2, c_2 = 0$\hfil\break $BR^4_{32}(-,Q^4_{2})\quad U=((2 3 4) , \iota , \iota , \iota)\quad D=((2 3 4) , (2 3 4) , (2 3 4) , (2 3 4))\quad \hbox{order 6} \quad c_1 = 5, c_2 = 3$\hfil\break $BR^4_{33}(-,Q^4_{2})\quad U=((2 3 4) , \iota , \iota , \iota)\quad D=((2 3 4) , (2 4 3) , (2 4 3) , (2 4 3))\quad \hbox{order 6} \quad c_1 = 2, c_2 = 0$\hfil\break $BR^4_{34}(-,Q^4_{2})\quad U=((2 3 4) , \iota , \iota , \iota)\quad D=((2 4 3) , (2 3 4) , (2 3 4) , (2 3 4))\quad \hbox{order 6} \quad c_1 = 2, c_2 = 0$\hfil\break $BR^4_{35}(-,Q^4_{2})\quad U=((2 3 4) , \iota , \iota , \iota)\quad D=((2 4 3) , (2 4 3) , (2 4 3) , (2 4 3))\quad \hbox{order 6} \quad c_1 = 5, c_2 = 3$\hfil\break $BR^4_{36}(Q^4_{1},Q^4_{2})\quad U=((2 4 3) , \iota , \iota , \iota)\quad D=\iota\quad \hbox{order 6} \quad c_1 = 5, c_2 = 3$\hfil\break $BR^4_{37}(Q^4_{1},Q^4_{3})\quad U=((2 4 3) , (1 3 4) , (1 4 2) , (1 2 3))\quad D=\iota\quad \hbox{order 3} \quad c_1 = 4, c_2 = 4$\hfil\break $BR^4_{38}(Q^4_{1},Q^4_{4})\quad U=((2 4) , \iota , \iota , \iota)\quad D=\iota\quad \hbox{order 4} \quad c_1 = 6, c_2 = 2$\hfil\break $BR^4_{39}(Q^4_{1},Q^4_{5})\quad U=((2 4) , \iota , (2 4) , \iota)\quad D=\iota\quad \hbox{order 4} \quad c_1 = 6, c_2 = 2$\hfil\break $BR^4_{40}(Q^4_{1},Q^4_{6})\quad U=((2 4) , (1 3) , (2 4) , (1 3))\quad D=\iota\quad \hbox{order 4} \quad c_1 = 4, c_2 = 4$\hfil\break $BR^4_{41}(Q^4_{1},Q^4_{7})\quad U=((2 4) , (1 4) , \iota , (1 2))\quad D=\iota\quad \hbox{order 6} \quad c_1 = 5, c_2 = 3$\hfil\break $BR^4_{42}(-,Q^4_{5})\quad U=(\iota , \iota , (1 2) , (1 2))\quad D=((1 2) , (1 2) , (3 4) , (3 4))\quad \hbox{order 4} \quad c_1 = 2, c_2 = 2$\hfil\break $BR^4_{43}(-,Q^4_{5})\quad U=(\iota , \iota , (1 2) , (1 2))\quad D=((1 2)(3 4) , (1 2)(3 4) , (3 4) , (3 4))\quad \hbox{order 4} \quad c_1 = 4, c_2 = 0$\hfil\break $BR^4_{44}(-,Q^4_{5})\quad U=(\iota , \iota , (1 2) , (1 2))\quad D=((1 2) , (1 2) , (1 2)(3 4) , (1 2)(3 4))\quad \hbox{order 4} \quad c_1 = 4, c_2 = 0$\hfil\break $BR^4_{45}(-,Q^4_{5})\quad U=(\iota , \iota , (1 2) , (1 2))\quad D=((1 2)(3 4) , (1 2)(3 4) , (1 2)(3 4) , (1 2)(3 4))\quad \hbox{order 4} \quad c_1 = 6, c_2 = 2$\hfil\break $BR^4_{46}(-,Q^4_{6})\quad U=((3 4) , (3 4) , (1 2) , (1 2))\quad D=((1 2) , (1 2) , (3 4) , (3 4))\quad \hbox{order 4} \quad c_1 = 0, c_2 = 0$\hfil\break $BR^4_{47}(-,Q^4_{6})\quad U=((3 4) , (3 4) , (1 2) , (1 2))\quad D=((1 2)(3 4) , (1 2)(3 4) , (3 4) , (3 4))\quad \hbox{order 4} \quad c_1 = 2, c_2 = 2$\hfil\break $BR^4_{48}(-,Q^4_{6})\quad U=((3 4) , (3 4) , (1 2) , (1 2))\quad D=((1 2)(3 4) , (1 2)(3 4) , (1 2)(3 4) , (1 2)(3 4))\quad \hbox{order 4} \quad c_1 = 4, c_2 = 4$\hfil\break $BR^4_{49}(Q^4_{1},-)\quad U=((1 4 3) , \iota , (1 4 3) , (1 4 3))\quad D=\iota\quad \hbox{order 6} \quad c_1 = 5, c_2 = 3$\hfil\break $BR^4_{50}(Q^4_{1},-)\quad U=((1 4 3) , (1 3 4) , (1 4 3) , (1 4 3))\quad D=\iota\quad \hbox{order 6} \quad c_1 = 5, c_2 = 3$\hfil\break $BR^4_{51}(Q^4_{1},-)\quad U=((1 4 3) , (1 4 3) , (1 4 3) , (1 4 3))\quad D=\iota\quad \hbox{order 6} \quad c_1 = 8, c_2 = 0$\hfil\break $BR^4_{52}(Q^4_{1},-)\quad U=((1 4) , \iota , \iota , (1 4))\quad D=\iota\quad \hbox{order 4} \quad c_1 = 6, c_2 = 2$\hfil\break $BR^4_{53}(Q^4_{1},-)\quad U=((1 4) , (2 3) , (2 3) , (1 4))\quad D=\iota\quad \hbox{order 4} \quad c_1 = 4, c_2 = 4$\hfil\break $BR^4_{54}(Q^4_{1},-)\quad U=((1 4) , (1 4) , \iota , (1 4))\quad D=\iota\quad \hbox{order 4} \quad c_1 = 6, c_2 = 2$\hfil\break $BR^4_{55}(Q^4_{1},-)\quad U=((1 4) , (1 4) , (1 4) , (1 4))\quad D=\iota\quad \hbox{order 4} \quad c_1 = 8, c_2 = 0$\hfil\break $BR^4_{56}(Q^4_{1},-)\quad U=((1 4 2 3) , (1 4 2 3) , (1 4 2 3) , (1 4 2 3))\quad D=\iota\quad \hbox{order 8} \quad c_1 = 8, c_2 = 0$\hfil\break $BR^4_{57}(Q^4_{1},-)\quad U=((1 4)(2 3) , \iota , \iota , (1 4)(2 3))\quad D=\iota\quad \hbox{order 4} \quad c_1 = 4, c_2 = 4$\hfil\break $BR^4_{58}(Q^4_{1},-)\quad U=((1 4)(2 3) , (2 3) , (2 3) , (1 4)(2 3))\quad D=\iota\quad \hbox{order 4} \quad c_1 = 6, c_2 = 2$\hfil\break $BR^4_{59}(Q^4_{1},-)\quad U=((1 4)(2 3) , (1 4) , (1 4) , (1 4)(2 3))\quad D=\iota\quad \hbox{order 4} \quad c_1 = 6, c_2 = 2$\hfil\break $BR^4_{60}(Q^4_{1},-)\quad U=((1 4)(2 3) , (1 4)(2 3) , (1 4)(2 3) , (1 4)(2 3))\quad D=\iota\quad \hbox{order 4} \quad c_1 = 8, c_2 = 0$\hfil\break